DISSOCIATION OF ANIONS AIF₆³⁻ IN SYSTEMS CONTAINING Li₃AIF₆. I. THE SYSTEMS LIF-Li₃AIF₆ AND Li₃AIF₆-AIF₃

M.MALINOVSKÝ and J.VRBENSKÁ

Institute of Inorganic Chemistry, Slovak Academy of Sciences, and Institute of Electrotechnology, Slovak Technical University, Bratislava

Received June 18th, 1970

Grjotheim's method of calculating the degree of dissociation of the complex anions AlF_6^{3-} was applied to the systems, $LiF-Li_3AlF_6$ and $Li_3AlF_6-AlF_3$. In the calculations the following fundamental data were used:

$$T_{(\text{Li}_{3}\text{A}|\text{F}_{6})}^{\text{f}} = 782^{\circ}\text{C}, \quad \Delta H_{(\text{Li}_{3}\text{A}|\text{F}_{6})}^{\text{f}} = 20500 \text{ cal mol}^{-1}.$$

The experimentally established and calculated liquidus curves of Li₃AlF₆ in the system LiF--Li₃AlF₆ do not differ by more than 3°C within the concentration interval (100, 60 mol%) Li₃AlF₆ if the degree of dissociation of AlF₆²⁻, β , is taken to be 0.35. However, in the system Li₃AlF₆-AlF₃, for the same value of β , the deviation of 3°C between the experimental and computed liquidus curves holds only within the concentration interval (100-90 mol%) Li₃AlF₆.

Since both Na₃AlF₆ and Li₃AlF₆ manifest themselves as a rounded maximum on the liquidus curves NaF (LiF)-AlF₃ this is to be expected that the complex anions AlF²₆⁻ dissociate partially during the melting process. The literature is concerned mostly with the problem of dissociation of sodium cryolite, for two reasons: first, because of its industrial importance, and second, because only for this cryolite the necessary experimental data has been established.

Pearson and Waddington¹ suggested that Na_3AJF_6 dissociated during melting according to Eq. (A)

$$Na_3AIF_6 \rightleftharpoons 3NaF + AIF_3$$
. (A)

The degree of dissociation of sodium cryolite was estimated to be 0.15-0.20. The remaining molecules of Na₃AlF₆ dissociate as follows

$$Na_3AIF_6 \rightarrow 3Na^+ + AIF_6^3$$
. (B)

The molecules of NaF formed by Eq. (A) yield Na⁺ and F^- , and the formed molecules of AlF₃ react together

$$2\operatorname{AIF}_3 \rightarrow \operatorname{Al}^{3+} + \operatorname{AIF}_6^{3-}.$$
 (C)

Abramov and coworkers² reported that using density data the degree of dissociation in Eq. (A) was found to equal 0.15 at 1000°C. Sodium cryolite was assumed to form ions by Eq. (B). The anions AIF_6^{3-} react further either by Eq. (D)

$$AIF_6^{3-} \rightleftharpoons AI^{3+} + 6F^- \qquad (D)$$

or by Eq. (E)

$$AIF_6^3 \Rightarrow AIF_3 + 3F^2$$
. (E)

Belyaev and coworkers³ believed that there were only ions present in the cryolite melts, namely Na⁺ and AlF₆³⁻, the latter being partially dissociated into Al³⁺ and F⁻ according to Eq. (D).

A classical thermodynamic method of determination of the degree of dissociation of AIF_6^{3-} in molten sodium cryolite was applied by Grjotheim⁴. The most probable scheme of dissociation of AIF_6^{3-} ions was shown to be

$$AIF_6^{3-} \rightleftharpoons AIF_4^{-} + 2F^{-}$$
. (F)

The degree of dissociation was reported⁴ to be 0.30, or, using a more exact value of the enthalpy of melting of sodium cryolite⁵, $\beta = 0.25$.

Similar conclusions were made by Frank and Foster⁶ and Rolin^{7,8}, and later by Vetyukov⁹. Another method for calculating the degree of dissociation of AlF_6^{3-} was suggested by Cochran¹⁰. However, the two latter methods are open to criticism.

The only direct measurement of the degree of dissociation of AIF_6^{3-} in molten sodium cryolite was reported by Solomons and coworkers¹¹. They investigated the Raman spectrum of molten Na₃AIF₆ at 1030°C using laser excitation. The results suggested the presence of both AIF_6^{3-} and AIF_4^{-} particles in the melt, the degree of dissociation of AIF_4^{-} , according to Eq. (F), being 70–75%. This appears to be a suprisingly high value.

Thus the presence of AlF₄⁻ anions in molten sodium cryolite is well-established. The equilibrium coexistence of different anions in the melt means that the experimentally determined melting point of pure sodium cryolite corresponds to the nonvariant equilibrium between the solid Na₃AlF₆ (in which there is either no dissociation of AlF₆³ ions at all, or if such a dissociation exists then only to a comparatively small extent, of order of 1%), and a mixture of ions in a fixed

proportion at a given temperature. The ideal melting point of an absolutely undissociated cryolite is therefore considerably higher than the experimentally determined melting point of the abovementioned "ionic mixture".

The phase diagram of the system LiF—AlF₃ has been re-established by Malinovský and coworkers¹² and it has been verified that the solid solutions are absent in this system (Fig. 1). The same author has determined the unknown value of the enthalpy of melting of lithium cryolite¹³. This enables Grjotheim's procedure to be applied to the lithium cryolite in the systems LiF—Li₃AlF₆ and Li₃AlF₆—AlF₃, respectively.

Recently, two publications dealing with the dissociation of AIF_6^{3-} anions in lithium cryolite at its melting point appeared: a paper by Rolin and coworkers¹⁴ and a thesis by Jenssen¹⁵. In the former the degree of dissociation of AIF_6^{3-} was found to be 0.30, in the latter 0.20.

Grjotheim and his coworkers⁵ suggested a complete dissociation of sodium cryolite according to Eq. (B) and a partial dissociation of AIF_{3}^{2} anions according to one of six different schemes:

$$2 \operatorname{AlF}_{6}^{3-} \rightleftharpoons \operatorname{Al}_{2} \operatorname{F}_{11}^{5-} + \operatorname{F}_{-}^{-},$$
 (G)

 $2 \operatorname{AlF}_{6}^{3-} \rightleftharpoons \operatorname{Al}_{2} \operatorname{F}_{10}^{4-} + 2 \operatorname{F}_{0}^{-}, \qquad (H)$

 $2 \operatorname{AlF}_{6}^{3-} \rightleftharpoons \operatorname{Al}_{2} \operatorname{F}_{9}^{3-} + 3 \operatorname{F}_{}^{-}, \qquad (J)$

$$AlF_6^{3-} \rightleftharpoons AlF_5^{2-} + F^-$$
, (K)

$$AIF_6^{3-} \rightleftharpoons AIF_4^- + 2F^-, \qquad (L)$$

$$AlF_6^{3-} \rightleftharpoons Al^{3+} + 6F^-. \qquad (M)$$

Assuming that the molten mixture under consideration can be regarded as an ideal ionic solution and choosing one of these dissociation schemes and a certain value of the dissociation degree, β , ($0 < \beta < 1$), it is possible to calculate the theoretical course of the liquidus curve of sodium cryolite in the systems with either NaF or AlF₃. It was found that the most probable scheme is Eq. (L), this being supported by other published results¹⁶⁻¹⁸, in which the existence of the compound NaAlF₄ was established. The degree of dissociation of AlF₃³ anions was reported to be 0+22-0+25 (23-25%) and the corresponding dissociation constant 0+03-0+04.

THEORETICAL

Dissociation of AlF_6^{3-} Anions in Molten Li_3AlF_6

We assume that each molecule of Li_3AlF_6 yields three cations Li^+ and a mixture of anions AlF_6^{3-} , AlF_4^- and F^- according to the scheme (*L*). Two arguments support this suggestion. These are the fact that the compound LiAlF_4 has been detected in the gaseous phase¹⁹⁻²¹, and also the results of cryoscopic measurements in the system Li_3AlF_6 -KCl by Malinovský²². The latter measurements showed that within the concentration range 0.5-2.0 mol% Li_3AlF_6 in KCl, each molecule of Li_3AlF_6

brought six new particles into the molten KCl. The most probable explanation is the complete dissociation of lithium cryolite according to the scheme

$$\mathrm{Li}_{3}\mathrm{AlF}_{6} \rightarrow 3\,\mathrm{Li}^{+} + \mathrm{AlF}_{4}^{-} + 2\,\mathrm{F}^{-}\,. \tag{N}$$

If the concentration of lithium cryolite in the mixture with potassium chloride is higher than 2 mol%, then only a partial dissociation of AlF_6^{3-} anions takes place. Therefore the presence of AlF_4^{-} anions in the melt of pure Li_3AlF_6 seems to be the obvious one.

Let us denote the degree of dissociation of AlF_6^{3-} anions according to the scheme (L) as β . We shall assume that the melt is regulated by the laws of ideal ionic solutions formulated by Temkin²³ and that within the considered temperature interval (less than 75°C) both the dissociation constant of AlF_6^{3-} and the enthalpy of melting of Li₃AlF₆ are not temperature dependent.

If one mol of Li₃AlF₆ melts, then a mixture of 3 mol Li⁺, $(1 - \beta)$ mol AlF₆³⁻, β mol AlF₄⁻ and 2β mol F⁻ are formed. The sum of the anionic mol is $1 + 2\beta$. Thus the activities of the individual ions are

$$a(\text{Li}^+) = 1 \qquad \qquad a(\text{AIF}_4^-) = \beta/(1+2\beta)$$
$$a(\text{AIF}_6^{3-}) = (1-\beta)/(1+2\beta) \qquad \qquad a(\text{F}^-) = 2\beta/(1+2\beta)$$

and the dissociation constant of AlF_6^{3-} is

$$K^{\text{dis}}(\text{AlF}_6^{3-}) = 4\beta^3 / (1-\beta) (1+2\beta)^2 .$$
 (1)

For the liquidus curve of lithium cryolite the generalized form of the Le Chatelier-Schröder equation holds

$$\ln a(\mathrm{Li}_{3}\mathrm{AlF}_{6}) = \frac{\Delta H^{f}(\mathrm{Li}_{3}\mathrm{AlF}_{6})}{R} \left[\frac{1}{T_{\mathrm{Id}}^{f}} - \frac{1}{T_{\mathrm{exp}}^{f}} \right], \qquad (2)$$

where $a(\text{Li}_3\text{AIF}_6)$ is the activity of Li_3AIF_6 in the molten lithium cryolite (i.e., in the mixture of Li^+ , AIF_6^- , AIF_4^- and F^- ions); $\Delta H^f(\text{Li}_3\text{AIF}_6)$ is the enthalpy of melting of one mol of lithium cryolite; T_{id}^f is the ideal, hypothetical melting point of the pure Li_3AIF_6 , if no dissociation of AIF_6^{3-} occurs; and T_{exp}^f is the experimentally established melting point of the pure Li_3AIF_6 . Since $a(\text{Li}_3\text{AIF}_6) = a^3(\text{Li}^+) a(\text{AIF}_6^{3-})$ we obtain after some rearrangement

$$\frac{1}{T_{\rm fd}^{\rm f}} = \frac{1}{T_{\rm exp}^{\rm f}} + \frac{R}{\Delta H^{\rm f}({\rm Li}_3{\rm AIF}_6)} \ln \frac{1-\beta}{1+2\beta}.$$
(3)

Dissociation of Li3AlF6 in the System LiF-Li3AlF6

We assume that each molecule of Li_3AlF_6 yields three cations Li^+ and that AlF_6^{3-} ions dissociate partially according to the scheme (L), the degree of dissociation being changed from β to δ . If the mole fraction of Li_3AlF_6 in the system with LiF is equal to x then in the liquid mixture there are $(1 + 2x) \mod \text{Li}^+$, $x(1 - \delta) \mod \text{AlF}_6^{3-}$, $x\delta \mod \text{AlF}_4^-$ and, finally, $[2x\delta + (1 - x)] \mod \text{F}^-$ in equilibrium. Therefore

$$K^{\rm dis}({\rm AlF}_6^{3-}/{\rm LiF}) = \frac{(1+2x\delta-x)^2 \,\delta}{(1-\delta) \,(1+2x\delta)^2}.$$
 (4)

The liquidus temperature, T, of Li₃AlF₆ is expressed by

$$\frac{1}{T} = \frac{1}{T_{id}^{\ell}} - \frac{R}{\Delta H^{\ell}(\text{Li}_3\text{AIF}_6)} \ln \frac{x(1-\delta)}{1+2x\delta}.$$
(5)

Dissociation of Li₃AlF₆ in the System Li₃AlF₆—AlF₃

We assume that the added AIF_3 will interact with molten lithium cryolite which consists of Li⁺, AIF_6^{-3} , AIF_4^{-} and F⁻ according to the scheme

$$F^- + AlF_3 \rightarrow AlF_4^-$$
. (P)

We assume such an addition of AlF₃ that a certain excess of free F⁻ ions will remain in the molten mixture of Li₃AlF₆ + AlF₃. If the mol fraction of Li₃AlF₆ is x in this mixture then in the melt at equilibrium there are present 3x mol Li⁺, $x(1 - \delta)$ mol AlF₆³⁻, $[x\delta + (1 - x)]$ mol AlF₄⁻ and $[2x\delta - (1 - x)]$ mol F⁻. Thus

$$K^{\text{dis}}(\text{AIF}_{6}^{3-}/\text{AIF}_{3}) = \frac{(1-x+x\delta)(2x\delta+x-1)^{2}}{x^{3}(1-\delta)(1+2\delta)^{2}} \,. \tag{6}$$

The equation for the liquidus temperature, T, of Li₃AlF₆ is

$$\frac{1}{T} = \frac{1}{T_{id}^{f}} - \frac{R}{\Delta H^{f}(\text{Li}_{3}\text{AIF}_{6})} \ln \frac{1-\delta}{1+2\delta}.$$
(7)

There is no term representing the activity of cations in Eq. (7) because the concentration of free Al^{3+} cations in the melt is thought to be zero and hence the activity of Li⁺ equals one.

The procedure for calculating is the following one: a) we choose a value of the degree of dissociation, β , and inserting it into Eq. (1) and (2), we compute

 $K^{dis}(\text{Li}_3AlF_6)$ and T^{f}_{id} ; b) since for ideal ionic mixture the following equations are valid

$$K^{dis}(AlF_6^{3-}) = K^{dis}(AlF_6^{3-}/LiF) = K^{dis}(AlF_6^{3-}/AlF_3), \qquad (8)$$

it is possible to calculate the degree of dissociation δ from Eqs (4) and (6) for a fixed value of x; c) inserting the x values and the corresponding δ values into Eqs (5) and (7) we obtain the theoretical liquidus temperature of lithium cryolite in the mixture in which x represents the mole fraction of Li₃AlF₆. The agreement between the calculated and experimental data within the limit of experimental errors is the criterion for the right choice of the degree of dissociation, β , of the pure molten Li₃AlF₆.

RESULTS AND DISCUSSION

The comparison of calculated using the digital computer Minsk 22 and measured temperature of lithium cryolite for some selected values of β is given in Tables I and II. The data concerning the degree of dissociation of AIF_6^{3-} , δ , in dependence on composition in the melt are also shown there.

In the system LiF—Li₃AlF₆ the best agreement between the calculated and measured liquidus temperature within the concentration range down to 40 mol.% Li₃AlF₆ occurs if β is chosen to be 0.35 (and hence the corresponding dissociation constant equals 0.06. In this case the absolute value of the maximum deviation, *i.e.*, $|T_{eale} - T_{exp}|$ does not exceed 3.1°C. However, if we consider that the accuracy of establishing the liquidus curve of Li₃AlF₆ in the system LiF—Li₃AlF₆ is equal to $\pm 1.5^{\circ}$ C, then the agreement within the limit $|1.5^{\circ}$ C| takes place only down to 50 mol% Li₃AlF₆.

Mol fraction x(Li ₃ AlF ₆)			LeChatelier			
	T_{exp}	$\beta = 0.05$	$\beta =$	0-35	$\beta = 0.95$	Schröder
		T	T δ		Т	Т
1.0	782	782	782	0.35	782	782
0.9	781.5	779.4	781.5	0.33	781.7	770.7
0.8	780.5	771.0	780.3	0.30	781.3	758-4
0.7	778	758.5	777.8	0.27	780.4	744.8
0.6	773	743.3	773-1	0.24	778.8	7 2 9·6
0.2	764	725.6	765.1	0.21	775.9	712-1
0.4	749	704.6	752-1	0.18	770.9	691.6
0.3	721	678-7	731-6	0.15	761.7	666.3

TABLE I Data on the System LiF-Li₃AlF₆ (T, °C)

Mol fraction x(Li ₃ AlF ₆)	Texp	Grjotheim's procedure						LeChatelier	Temkin
		$\beta = 0.05 \ \beta = 0.1$		$\beta = 0.15$	$\beta = 0.35$		$\beta = 0.95$	Schröder	model
		T	<u>T</u>	Т	T	δ	T	T	T
1.0	78 2	78 2	782	782	78 2	0.35	782	782	782
0.9	776-1	772.1	775.1	776.7	779.25	0.36	780.8	770.7	740.9
0.8	762.4	754-1	759-5	763·25	770.75	0.39	776.9	758-4	702·3
0.7	738·6	730.9	737.7	742.7	754·9	0.44	767.9	744·8	664.4
0.65	721.5	717-1	724.1	729.6	743.6	0.48	760.3	737.5	645.3
0.6	710·0	701-3	708.4	714-1	729.3	0.53	749.4	7 2 9·6	625-7

Data	on	the	System	Lia	AIF.	-AIF-	(T)	°C)
Data	ψn		Djotom		**** 6		· · ·	Ο,

TABLE II

In the system Li₃AlF₆-AlF₃ the accuracy of determination of the liquidus temperature of Li₃AlF₆ is somewhat less, $\pm 3^{\circ}$ C. Then the best agreement between the calculated and measured curve within the difference $|3^{\circ}$ C| occurs if $\beta = 0.10$. In this case both curves agree within the range 100-65 mol.% Li₃AlF₆. This means there is an inconsistency between the most suitable values of β in both systems. We are of the opinion that the results based on the data from the system LiF-Li₃AlF₆ are more reliable than those from the system Li₃AlF₆-AlF₃ because the behaviour of the former is closer to the ideal behaviour than in the case of the latter, as it has been shown by Paučirová and coworkers²⁴. We therefore prefer the value $\beta = 0.35$. In this case an agreement within the difference $|3^{\circ}$ C| between the calculated and measured liquidus curves of Li₃AlF₆ in the system Li₃AlF₆-AlF₃ is restricted to the mixtures with 90 and more mol% Li₃AlF₆.

Quite recently the degree of dissociation β was computed by Paučírová and coworkers²⁵ on the basis of density data and the magnitude 0.30 was found which is closed to the reported value 0.35.

The ideal melting point of an absolutely undissociated Li_3AlF_6 calculated from Eq. (3) using $\beta = 0.35$ has been found to be 897.1°C.

It should be stressed that all simplifying assumption which have been made in the calculation are fulfilled the better the larger is the concentration of lithium cryolite in the mixture. But just in such regions the liquidus temperature is only slightly dependent on the degree of dissociation β , especially in the system LiF-Li₃AlF₆. If data from the concentration interval (100-90 mol%) Li₃AlF₆ should be taken as a basis for calculating the quantity of β , then the liquidus temperature of Li₃AlF₆ has to be established with an accuracy better than $|0\cdot1^{\circ}C|$.

From data presented in Tables I and II it follows that among different possibilities of calculating the path of liquidus curves of Li_3AIF_6 in the system under considera-

tion only Grjotheim's method based on the concept of a partial dissociation of AlF_6^{3-} anions yields results which are in general in good agreement with experiments.

REFERENCES

- 1. Pearson T. G., Waddington J.: Discussions Faraday Soc. 32, 307 (1947).
- Abramov G. A.: The Theoretical Principles of the Electrometallurgy of Alumium (in Russian), p. 200. Metallurgizdat, Moscow 1953.
- Belyaev A. I., Rapoport M. B., Firsanova L. A.: The Electrometallurgy of Aluminium (in Russian), p. 134. Metallurgizdat, Moscow 1953.
- Grjotheim K.: Contribution to the Theory of the Aluminium Electrolysis. Det Kgl. Norske Videnskabers Skr., Nr. 5, F. Bruns Bokh., Trondheim 1956.
- 5. Brynestad J., Grjotheim K., Urnes S.: Metallurg. Ital. 52, 495 (1960).
- 6. Frank W. B., Foster L. M.: J. Phys. Chem. 64, 95 (1960).
- 7. Rolin M.: Bull. Soc. Chim. France 1960, 677, 681.
- 8. Rolin M.: Bull. Soc. Chim. France 1962, 429, 939.
- Baimakov J. V., Vetjukov M. M.: *Electrolysis of Molten Salts* (in Russian) p. 372. Metallurgizdat, Moscow 1966.
- 10. Cochran C. N.: Trans. Metallurg. Soc. AIME 239, 1056 (1967).
- 11. Solomons C., Clarke J. H. R., Bockris J. O'M.: J. Chem. Phys. 49, 445 (1968).
- 12. Malinovský M., Čakajdová I., Matiašovský K.: Chem. zvesti 21, 794 (1967).
- 13. Malinovský M.: Chem. zvesti 21, 783 (1967).
- 14. Rolin M., Latreille H., Pham H.: Bull. Soc. Chim. France 1969, 2271.
- 15. Jenssen B.: Thesis. Technical University of Norway, Trondheim 1969.
- 16. Howard E. H.: J. Am. Chem. Soc. 76, 2041 (1954).
- Mashovets V. P., Beleckij M. S., Saksonov Y. G., Svoboda R. V.: Dokl. Akad. Nauk SSSR 113, 1290 (1957).
- 18. Ginsberg H., Böhm A.: Z. Elektrochem. 61, 315 (1957).
- 19. Porter R. F., Zeller E. E.: J. Chem. Phys. 33, 858 (1960).
- Hildebrand D. L., Theard L. P.: U.S. Dept. Com., Office Techn. Serv., A. D. 258, 410. Aeronutronic, Newport Beach, Calif., 1961; Chem. Abstr. 58, 7433 (1963).
- 21. MacCory L. D., Paule R. C., Margrave J. L.: J. Phys. Chem. 67, 1086 (1963).
- 22. Malinovský M., Matiašovský K.: Chem. zvesti, in press.
- 23. Temkin M.: Acta Physicochim. URSS, 20, 411 (1945).
- 24. Paučírová M., Matiašovský K., Malinovský M.: Rev. Roumaine Chim. 15, 33 (1970).
- 25. Paučírová M., Matiašovský K., Malinovský M.: Rev. Roumaine Chim. 15, 201 (1970).

Translated by the author (M. M.),